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Abstract: We describe an algorithm for the direct solution of sys­
tems of linear algebraic equations associated with the discretiza­
tion of boundary integral equations with non-oscillatory kernels 
in two dimensions. The algorithm is "fast" in the sense that its 
asymptotic complexity is O{Nlog~~: N), where N is the number of 
nodes in the discretization, and K depends on the kernel and the 
geometry of the contour (~~: = 1 or 2). Unlike previous fast tech­
niques based on iterative solvers, the present algorithm directly 
constructs a sparse factorization of the inverse of the matrix; thus 
it is suitable for problems involving relatively ill-conditioned ma­
trices, and is particularly efficient in situations involving multiple 
right hand sides. The performance of the scheme is illustrated 
with several numerical examples. 

1. INTRODUCTION 

Boundary value problems of classical potential theory are ubiquitous in engineer­
ing and physics. Most such problems can be reduced to boundary integral equations 
which are, from a mathematically point of view, more tractable than the original 
differential equations. Although the mathematical benefits of such reformulations 
were realized and exploited in the 19th century, until recently boundary integral 
equations were rarely used as a numerical tool, since most integral equations upon 
discretization turn into dense matrices. In the 1980's, the cost of applying dense 
matrices resulting from potential theory to arbitrary vectors was greatly reduced 
by the development of "fast" algorithms {Fast Multipole Methods, panel clustering, 
wavelets, etc.). Combining fast matrix-vector multiplication techniques with itera­
tive schemes for the solution of large-scale systems of linear algebraic equations, it 
became possible to solve well-conditioned boundary integral equations of potential 
theory in 0( n) operations. Today, such combinations are in many environments the 
fastest and most accurate numerical solution techniques available. Iterative linear 
solvers have certain drawbacks though; we briefly discuss these below. 

{1) The number of iterations required by an iterative solver is sensitive to the 
spectral properties of the matrix of the system to be solved; for sufficiently 
ill-conditioned problems, the number of iterations is proportional to n. Since 
each iteration (with FMM acceleration) requires O(n) operations, the total 
operation count is proportional to n2• While this is still better than the 
O(n3) estimate associated with direct solvers, in many situations O(n2) is 
not acceptable. 
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